darkon/gradcam/gradcam.py

Unused variable '__class__'
57
class Gradcam:
Dangerous default value dict() (builtins.dict) as argument
99
def gradcam(self, sess, input_data, target_index=None, feed_options=dict()):

darkon/influence/influence.py

Unused variable '__class__'
53
class Influence:

test/test_gradcam.py

Unused variable '__class__'
57
class TestGradcam(unittest.TestCase):
Unused variable 'net'
94
net, end_points = resnet_v1.resnet_v1_50(self.inputs, self.nbclasses, is_training=False)
Trailing whitespace
105
self.assertEqual('resnet_v1_50/block4/unit_3/bottleneck_v1/Relu', self.target_op_name)
Unused variable 'end_points'
109
net, end_points = vgg.vgg_16(self.inputs, self.nbclasses, is_training=False)

test/test_gradcam_dangling.py

Unused variable 'net'
38
net, end_points = resnet_v1.resnet_v1_50(inputs, self.nbclasses, is_training=False)
Trailing whitespace

test/test_gradcam_guided_backprop.py

Unused variable 'y'
27
y = tf.placeholder(tf.int32, name='y_placeholder', shape=[1, 2])

test/test_gradcam_sequence.py

Unused variable '__class__'
22
class TestGradcamSequence(unittest.TestCase):
Trailing whitespace
36
graph = tf.get_default_graph()
Trailing whitespace
41
conv_op_names = darkon.Gradcam.candidate_featuremap_op_names(sess,
Trailing whitespace
44
prob_op_names = darkon.Gradcam.candidate_predict_op_names(sess, 2,
Unused variable 'ret'
53
ret = insp.gradcam(sess, self.x_test_batch[0], feed_options={dropout_keep_prob: 1})

test/test_gradcam_util.py

Unused variable 'y'
59
x, y, cross_entropy = nn_graph(activation=tf.nn.relu)

test/test_influence_dropout.py

Unused variable '__class__'
57
class MyFeeder(darkon.InfluenceFeeder):

test/test_influence_feeder.py

Unused variable '__class__'
26
class MyFeeder(darkon.InfluenceFeeder):
Unused variable '__class__'
50
class TestInfluenceFeeder(unittest.TestCase):
Unused variable '__class__'
55
class ParentTestFeeder(darkon.InfluenceFeeder):